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The integral (1), or in generalized, dimensionless form (5), is discussed with respect to
thermal activation analysis. In this field of application it is appropriate to use y = kT/E as the
independent variable, which is physically restricted to values y < 0.1. The second parameter r,
attributed to a minor correctional temperature dependence of the frequency factor, is
considered as a family parameter. For the evaluation of activation energy from experimental
glow curve data a special factor within the integral, called slope factor #,(y), is required to
high accuracy. For this special factor intrinsic recurrence relations with respect to r are given
so that numerical basis values for #4(y) allow the calculation of 7,(y). Some points for 7,(y)
are tabulated to an accuracy 9D. These points compare favourably with the rational approx-
imations given by various authors, and the derivation of some modified new approximations,
designed for relative accuracies of ~107° to 107> For numerical determination of #7,(»),
where 0 < y < ¥, the algorithmic approximations 7.(y) (Table I) and formulas VI, I, V, and
IV (Table II) in the accuracy range 1075 to 10~7 are recommended. In the range 1073 the
semi-empirical formulas (Table V) are sufficiently accurate, especially 75(y;4’) and
n¥(y; B').  © 1985 Academic Press, Inc.

INTRODUCTION

Recent interest in a highly accurate, rational computation of the integral

r
[ vr . emenT aT = (T3 B, 1)~ BTy B, ) W

Ty

can be observed [1-13]; T—temperature, k—Boltzmann-constant, E—activation
energy. This interest is connected with improved automatization, exactness of
apparatus, and experimental developments in the field of glow curve analysis as well
as for similar thermostimulated physical, electronical, and chemical kinetic processes.

In thermoanalytical experiments a reaction is systematically enhanced by steadily
raising the temperature in order to locate the temperature region where traceable
reaction progresses with a maximum of the reaction velocity at a distinct T, followed
by an exhaustion of still unreacted partners. In the resuit, the following kinetic
parameters are estimated quantitatively:
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FE—activation energy,
K—frequency factor,
1—kinetic order, and
r—temperature exponent of the frequency factor.

The corresponding differential equation is
~dC/dT = (K,/q) - C(T/T)" - e ¥/*T;  C(Ty) = C, )

C——concentration of reactants, ¢ = dT/dt—heating rate. In previous literature, except
[1, 12], only the case r = 0 has been considered. A more general solution will now be
derived.

From a data plot C(T’; q) under these thermostimulated conditions the value of the
activation energy can be determined by means of a well-known integral method
[14~16] leading to a line of the “concentration” integral versus reciprocal
temperature with the slope

d ("Jcm dacC ) dinF E 3)

d(i/kT) \"Je, CT) T d(/KT) T 7, (kT/E)

The slope factor, #,(kT/E), is very close to unity and varies extremely slowly and
montonically as the argument y = kT/E increases. This factor completes integral (1),
namely,

F(T;E,ry=n, e *""  kT**"[E=1, - y* - dF/dy. “)

Several values of 7,(y), significant to 9D, are tabulated for 0 <y < 0.5 (column 4,
Table I).

The usefullness of the special function #,(y) will be discussed with respect to
thermal analysis. Corresponding recurrence relations and inequalities as well as likely
approximations will be proposed. Relations to other special and tabulated functions
[17-28] will be shown.

Before going into a detailed description of the special function #,(y) a few words
on the philosophy of approximations in view of the availability of high speed
computing machinery shall be cited from the preface of Luke’s “Mathematical
Functions and Their Approximations” [21]:

To impress tables in the memory of a computer and then program for table look up and inter-
polation is not economical. A computer requires efficient algorithms and schemes for the
evaluation of functions on demand. Numerical values of functions are but a facet of the
overall problem. We desire approximations to complete functions and their zeros, to simplify
mathematical expressions such as integrals and transforms, and to facilitate directly the
mathematical solution of a wide variety of functional equations such as differential equations,
integral equations, etc. So the main thrusts are on the development of analytical expansions
and approximations of functions for universal use.
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And especially for polynomial and rational approximations cited striking virtues are
“that they have better convergence properties than their Taylor series counterparts,”
that they “satisfy simple recursion formulas, which can be used in the forward
direction to generate values of the polynomials,” and that they “give rise to two-sided
inequalities for these functions.”

PHYSICAL BACKGROUND AND PARAMETER RANGE

Reactions always take place at temperatures T < E/k, with physical dimensions: E
in electron volts, T in degrees Kelvin, at: T[K] < 11604.5 - E[eV]. At very low
temperatures the reaction is “frozen in.” Depending on the sensivity of measuring
equipment certain reactions can be traced when T is raised to some (<5 -+ 45) - E/k.
Maximum velocities are reached at 7'~ (3 -+ +) - E/k; this moment is, to a minor
part, also dependent on the amount of the frequency factor K,, but practically
independent both on 7 and /. A very rough estimate from the maximum condition is

Efk

r In (10°K,/q) — 2 In(In(10°K,/q))

IR

A reaction peak at T has a finite half-width [24, 25]
623.75.T~0.1T,

so that for 7' < 0.85 - T, essentially no reaction occurs (but here are no mathematical
difficulties). For 7> 1.1 - T all reactants are exhausted and the reaction is finished.

A ground value for K in solid state reactions is the Debye frequency of that
solid = 10"°-10"*/s. Many reactions become perfect only after a large number of
jumps of one or of all kinds of the reactants through the bulk of the material. Due to
this retardation K, can be as low as K, =~ 10° ... 10" ... 10"* per second [24]. In all
these cases, we limit our interest to values 0 < y < 5% or at least to y < s

In the practice of thermal analysis single reaction processes can seldom be
observed, mostly a complex spectrum appears. Some processes can proceed
simultaneously or consecutively. They can influence different measureable properties
with different weights. It is possible that one or all kinetic parameters are not
represented by discrete values, whereas any underlying distribution for these
parameters may not be known. Here our concern is with the idealized case of a single
process with discrete kinetic parameters and restricted to small y.

Today a relative accuracy of the order 10~2*%% is often required for the deter-
mination of the activation energy from the analysis of kinetic reaction data; ten years
ago this level was of the order 5-10%. Different analytical approximations for the
function #,(y) with acuracies up to 107% to be considered in this note, offer
theoretical advantages for future developments.



30 M. BALARIN

Due to an internal compensation the relative error obtainable for the frequency
factor is predetermined by AK/K =1/y-AE/E. When a parameter evaluation is
started from experimental data the most sensitive parameter is activation energy and
therefore #, is directly required in (3). The integral (1) or (5) itself is not necessary in
any direct sense, although such claims are overemphasized as an unresolved problem
in many thermoanalytical publications.

The temperature dependence of the reaction rate is mainly expressed by the
exponential Arrhenius term exp(—E/kT); through the preexponential factor 7" a
minor correctional temperature influence is taken into account. In some reaction
models this factor represents temperature dependence of reaction cross sections, or
reactants mobilities. Usually the power r is an integer or half-integer value. Because it
reflects only a minor additional temperature influence, r is not much different from
zero, e.g., —3 < r < + 3. In this sense r is not treated as a variable, but as a family
parameter.

TABLE

Comparison of Likely Approximations ng(y) to

For 1 Lieq II 111 v
[17,4] (see text!)
'7:)6.;.3
o 1+ 7,57 +3,5° - . 1+ 13y + 36y + 6y°

X approximation: 1495 + 1657 1 95° Ny + 220800y T+ 159 1 60p% 1 60y

main error term: —6y° 720p7
© —6.39 —6.40 0.0 0.0 0.0

100 —1.86 —2.01 0.00 0.00 0.00
90 —1.56 -1.72 0.00 0.00 0.00
80 —1.23 —1.40 —0.01 —0.00 —0.00
70 —0.85 —-1.05 —0.01 —0.00 —0.00
60 —0.45 —0.66 -0.01 0.00 0.00
50 —0.03 —0.27 —0.03 —0.00 0.00
45 0.18 —0.06 —0.03 0.01 0.01
40 0.34 0.10 —-0.08 —0.01 0.00
35 0.48 0.25 —0.16 —0.03 0.00
30 0.55 0.35 —0.34 -0.09 0.0t
25 0.51 0.39 —0.85 —-0.29 0.03
20 0.32 0.40 —2.52 -1.05 0.12
15 —0.01 0.59 —9.98 —0.48 0.61
10 —0.21 1.99 —63.96 404.65 5.07
8 —0.11 3.53 —169.51 3941.95 15.01
6 0.08 5.95 —562.96 60790.59 55.58

Note. Represented are the relative deviations D = An¥/n, = (1 — 1,)/n, in parts per million (ppm).
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ON CALCULATIONAL PROCEDURES

Values in the tables are significant to the number of digits tabulated. Occasional
calculations were made with integer values for the indicated x; (») means a rounded
value of y=1/x. In all analytical representations the description by the small
unrounded quantity y is prefered (not x- as was often done for other approximations
[1-10, 12]—see later) to emphasize the convergence tendencies.

For systematic comparisons of various good (see Table II) and some less
appropriate (Table III) approximations, relative deviations from the exact values are
given in parts per million (in ppm). A thorough error estimation is required. In [4]
Jenkins claims, that a given rational approximation (originally from [17]) to the Airy
function (in this note later compared as approximation formula I) has for the integral
F(T; E) an error limitation |¢] <2 - 1078 for all x > 1. Notice that for all x > 15 the

(y) with a Decreasing Number of Accounted Terms

v Vi VII VIII IX X
[10] [10] [9] [27,5,7,9,10]
Mok Mor2.2 Mon.2 ne. 60,1 Mot
1+ 10y + 18y? 1+6y+2? 1+4y 14y 1 |2
1+ 12y + 36p* + 24y° 1+ 8y + 12)* 1 + 6y + 6y° 1+ 3y 1+2y =T
—144y° 48y° —12y* 6y° —2y? —6y?
0.0 0.0 0.0 0. 0. 0.
0.00 0.01 —0.10 6. —189, —589.
0.00 0.01 —0.15 7. —231. —1725.
—0.00 0.01 —0.25 11. —291. —915.
—0.00 0.02 —0.40 15. —376. —1192.
—0.00 0.05 -0.72 24, —505. —1615.
-0.01 0.10 —1.42 41. —714. —2313.
—0.00 0.18 —2.09 55. —871. —2844.
—0.02 0.29 —3.24 76. —1085. —3583.
—0.04 0.53 —5.26 110. —1391. —4652.
—0.08 1.06 —9.15 169. —1847. —6284.
—0.21 2.36 —17.42 278. —2572. —8955.
—0.64 6.15 —317.55 506. —3825. —13787.
—2.56 20.25 —97.68 1072. —6289. —23955.
—15.83 98.85 —~347.43 2548, —12248. —51758.
—40.21 224.33 —667.93 5010. —17323. —78741.
—123.42 607.48 —1472.78 9622. —26436.  —134610.

581/57/1-3
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value of the integral is smaller than this error limit, decreasingly by several orders of
magnitude. The relative accuracy becomes less accurate ~6 - 10~° for very small y
(see TableII, column 2).

THE SpeEciAL FunctioN n,(y)

For generalization of (1) we consider in dimensionless form with y = kT/E,

y
I(y; r)=f0 yree W dy =n y)-y*tTe” ¢)

and, equivalently,

e’? ,
M) = [ ey ©)

Equation (6) is a solution of a Riccati-type differential equation of first order

dn, 1+Q+r)y 1
i — = 7
dy y =3 ™

From (6) it can be seen that #,(0)=1 and n_,(y) = 1. The #, satisfy the following
recursion formulas

1 l—nr
o=y ®)

MoaP)=1—=0+1)-y-n(p) 8"

and n73=14y; n7%=142y+ 2y*; and so on. A rough two-sided enclosure is
estimated to be for y # 0,

1+ (rl+ 2}y <m{y) < 1+ (r1+ Dy ©)

and
< Myyy <My <A <My <My Ko (10)

and

e M <N <N, =1 <5<

Within the range y < &, #,(») is a positive, monotonically decreasing function for all
10
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X2 1L/= 8K
100 S0 4e 30 25 20 15 12 10

R N

FiG. 1. Special function #,(y) for 0<y < 0.l and r=—3 .- +3.

r>—2 and an increasing function for r < —2, as can be seen in Fig. 1. Some
numerical values for the case r =0 are given both for the integral I(y; 0) and for the
slope factor in Table I, columns 3 and 4.

SEMICONVERGENT POLYNOMIAL APPROXIMATION

Substituting 7, ~ >, 8, - y" in Eq. (7) leads to the known [14, 15|

nV(y)=1+ i ()" (r+14+1)! (11)

n=1

This is an alternating, semiconvergent series. An approximation to the finite, positive
integral (5) by (11) is achieved by restricting N ~ 1/y — 2. Here it is of great impor-
tance, that our interest is in small y (error analysis see in [3]). For y < {5 even with
few terms N’ < N a high accuracy can be obtained. For an example of the
convergence and the alternating character of first finite, truncated series 75V (y) see
Table I, columns 10-13 for N=2-5. Given are the relative deviations
AnE/ne = (n& — no)/n, from the exact value n,(y) in ppm.
For polynomial interrelation use

I'n+2+r)

re+n "t il

120) =10+ Y - |
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Although the polynomial representation (11) is an oscillating function with N zeros,
all these zeros are well outside the appointed region y < 5. Within this region
approximation (11), due to

dan,
dy

=—(r+2)+2(r+2)r+3)y—+-,

confirms the monotone slope of #,(y).
Two simple effective approximations to #,(y) and inequalities are

1 1
@), = > g

——<n®; g
Jitay oo BT Tray 187

I

N4

with

@
N

<Mp <to <1y <nEP.
A good approximation to 7, with An¥/n, < 10~* for all y < 0.05 is

1

"C\A+@+®’

(see columns 5-9, Table I).

RATIONAL APPROXIMATION

Rational approximations converge sooner than polynomial approximations. For a
quotient: 1 divided by a denominator, consisting in a finite number of polynomial
terms, i.e., 1/}, ¢,»", a close approximation by a corresponding Taylor series coun-
terpart requires a greater number of terms (Q’ > Q), theoretically an infinite number
of terms. Let

N
n(y)=1+ 3 a,, " (a,, from (11)),

n+1
be approximated by
Z:;:O bp,r : yp

Mrpo=<5g 7
qg=90 cq,r -y

(13)

where by ,=¢,,=1; PN, QKN.
Then for increasing p the following equations for matrix elements must be satisfied:

P
bp,r — cp,r = Z an,r * cp—n,r = ap,r + Z an,r * cp—n,r' (14)
n=0 [

In an approximation step (P) the pair of coefficients b, and c, is determined, but only
up to their difference b, —c,, by all the preceding correct ¢, (p’ < p). One of these



ACCURACY OF APPROXIMATIONS 37

two parameters b, or ¢, can now be chosen arbitrarily. This can be continued further
with freedom to fix one of the next coefficients b,, , or ¢, , arbitrarily. In this sense
there does not exist an unambiguous rational approximation to #,(»).

To reduce the number of coefficients and terms for 7" up to N coefficients can be
prefixed, for instance—but not necessarily—equal to zero. The rest are then deter-
mined by the set of linear equations (14). Some resulting likely rational approx-
imations are given in Table IV.

For comparison and illustration the closeness of these approximations to 5(y) is
included in Table II; only the case r=0 is tabulated. In practice for a definite
demand on accuracy and any limited range y one can choose the corresponding
formula, which leads to sufficient accuracy and with minimal required calculational
effort.

RELATION OF 7,(y) To OTHER PUBLISHED RATIONAL APPROXIMATIONS

Our slope factor is correlated to

1/y

7.(») =97  E, (1)), (15)

where E,, represents the well-known function
w0
En)=| Srdy  x=1)p.
1t

For the exponential integral, i.e., m = 1 and r = — 1, various tables are available. Also
some rational approximations to E (x) are given [17-24] in the form

et X . s ,
E=5 S aarrf S g,
n=0 n=0

usually with ¢y =f,=1.

Only one relation [17,4] will be compared explicitely, illustrating both accuracy
and redundancy. This approximation formula I is characterized by n’' =4 with the
following coefficients:

for FormulaI [17, 4] for I quceq
n ay, ﬁn ﬂn—an ﬂn_an ﬁn
0 1. 1. 0. 0. 1.
1 8.57332 87401 9.57332 23454 0.99999 36053 1.0 9.5733
2 18.05901 69730 25.63295 61486 7.57393 91756 7.5739 25.633
3 8.63476 08925 21.09965 30827 12.46489 21902 12.465 21.1
4 0.26777 37343 3.95849 69228 3.69072 31885 3.7 4,
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(corresponding deviations for formulas I and I,.,—see Table II). In consequence of
the recursion formula (8),

1 el”
'70(J’)=7' [1 ——y—-El(l/y)] (16)
and, with a, = §,,
* =ﬂl—al+§:z,=2(ﬁn_an)'yn_l 16’
15(7) ﬂo+2:l=lﬂn -y . (16

The error of this approximation for small y equals

Ang ~ fi—ai+Br—a+28,—B)y+ (B —as + 680+ 28, —B)y* + -

Mo Mo+ Bo+Biyy+-) (17)

For approximation I this leads to

Ang
Mo

=—6.4 - 107° +0.00062y — 0.021y* + — --+,

and particularly to

Ang
Mo

=—6-10"° for y=0,

=-2.10"° for y=0.01,

in full agreement with Table II.

From (16) the error propagation gives An, = x - A(E,e"/x). Hence the absolute
error for 7,(y) (and the relative error due to n— 1) for the same rational approx-
imation is x times greater than the corresponding error A(E, exp(x)/x). Only this last
error is claimed [4] to be smaller than 2 - 1075,

The relative accuracy for the determination of the integral I( y; 0) is closely related
to the relative accuracy of the evaluated #,(») and is not equal to the accuracy of the
approximation to E (x).

To get the desired accuracy of any approximation #*(y) it is sufficient to evaluate
every term in the polynomials 3, - y" or (6, — @,) »" accurately to within that error
limit. In this sense all coefficients in formula I contain extra digits. Therefore these
coefficients have been rigorously truncated to the values in the last columns (for
I equcea)- The resulting An*-deviations can be found in Table II, column 3, with no
qualitative difference or disadvantage, especially for y < +5-

Starting from the numerical redundant formula I, a still simpler expression with
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extremely truncated f, and (f, —a,) in accordance with (14) and favourably with
respect to (17) is

1+ 7.5y + 3.5*
1+ 9.5y + 16.5* + 9y*

ne(y)= (as formula II).

Here the correct trend for extremely small y to 7(0) =1 should be noticed—see
Table II.

There are further approximations to the integral I(y;0) or to E(x) with decimal
coefficients, but commonly less accurate. They all can be treated in the same way to
obtain a unified form like (13) and (16'). From this unified form and from (17) due
to the smallness of the accounted y it can be estimated, to what extent the accuracy
of the coefficients of the ascending power terms can be diminished. In practice this
situation is not obvious; an unfortunate example is the proposal by Roeck [12], who
did not give reasons for the special selection of his series coefficients (Table III).

This note discourages any further use of such alternative approximation formulas,
because there are the likely approximations according to (14) and compared in
Table I1, especially formulas IV, V, VI, and II, with integer-like coefficients and the
minimal number of terms for a distinct required accuracy.

Thermoanalytical results not obtained by our approximations should be reanalyzed
for correctness of results. To promote such a revision for some often-used approx-
imations their deviation from the correct #(y) is given in Table III for only a few
argumental points y = 135, 5> 25> and 75 For some of the original versions a
modified formula shows, that the same, or even a better approach, can be found by a
likely simpler expression. Some indicated formula corrections, according to (14),
remove obvious misprints in the corresponding original papers.

SEMI-EMPIRICAL APPROXIMATION TO #,(y)

Finally a very easy approximation will be demonstrated, which is suitable when an
accuracy of the order An*/n, ~ 0.1% only is required within a strongly limited region
for the argument y. From known exact reference points in the vicinity of any given
argument y a linear, quadratic, or hyperbolic approach is sufficient:

n(y)=1—Ay + A4’y (18)
1

“T BBy (189

The resulting coefficients, for instance,

n(y)—1+Q2+r)y

A'(y;r)= 5

for A=2+r,
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for the case r =0 are given in Table IV; the relative shift of these coefficients is
small. In the neighboring columns the errors (in ppm) of the approximations

(1
(1

us

10.
11.
12.
13.
14.
15.

16.
17.

18.
19.
20.
2L
22.
23.
24.
25.
26.

27.
28.

8, 18'), are presented.

For some test evaluation of experimental data these empirical approximations (18,
8') give good estimates, much simpler and even more accurate than some formulas
ed previously in the literature (compare Tables V and III).
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